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Interactions of oblique waves have recently been investigated theoretically and nu-
merically and found to give rise to rapid transition in flows subcritical to linear wave
disturbances. The transition scenario consists of the formation and transient growth
of streamwise streaks of high and low velocity and later a rapid growth of high-
frequency disturbances leading to breakdown. The present study is the first extensive
experimental investigation of oblique transition. The experiments were carried out in
a plane Poiseuille flow air channel in which the oblique waves were generated, one at
each wall, by vibrating ribbons and the development of the flow was mapped with
hot-wire anemometry. The experiments consist both of low- and high-amplitude wave
disturbances; in both cases streaky structures are created. For the low-amplitude case
these structures decay, whereas for the high amplitude the flow goes towards break-
down. This study has confirmed and extended previous theoretical and numerical
results showing that oblique transition may be an important transition scenario.

1. Introduction
Transient growth has been shown to be a possible linear mechanism for the growth

of three-dimensional disturbances at subcritical Reynolds numbers in wall-bounded
flows. In the inviscid case Ellingsen & Palm (1975) and Landahl (1980) showed
that a three-dimensional disturbance may grow algebraically with time if there is a
forcing by the normal velocity. For plane Poiseuille flow Gustavsson (1991) showed
that after the initial algebraic growth, the disturbance energy reaches a maximum
after which it decays due to viscosity. He also showed that the time scale for growth
scaled with the Reynolds number, i.e. the time to reach a certain size is proportional
to Re−1 (Re = UCLh/ν, where UCL is the laminar centreline velocity, h is half the
channel height and ν is the kinematic viscosity). For infinitely long disturbances
Gustavsson found the largest amplification to occur for spanwise wavenumbers close
to β = 2 (β = 2πh/λ, where λ is the spanwise wavelength), although the wavenumber
dependence was not very strong. Butler & Farrell (1992) extended this work by
determining the optimal perturbation for plane Poiseuille and Couette flow as well
as for a (parallel) Blasius boundary layer flow. A summary of the development up to
this point can be found in Trefethen et al. (1993). It should be pointed out (e.g. see
Waleffe 1997) that transient growth of streaky structures is only the first step towards
transition, the latter stages must involve nonlinear effects.

All the above studies view transient growth as a temporal process; however in most
physical flows disturbances develop in space instead of time. There is no clear-cut way
to transform the temporal results to the spatial development, but several experiments
(both numerical and physical) show that a similar development can occur spatially,
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i.e. as the disturbance moves downstream its energy may first increase, whereas
viscous decay will eventually make it disappear. However, if the disturbance amplitude
becomes large enough the structure may instead break down into turbulence.

One example is the experiment by Klingmann (1992) who investigated growing
three-dimensional disturbances in plane Poiseuille flow at subcritical Reynolds num-
bers. She used a point-like disturbance which developed into streaky structures. The
energy of the structure first increased linearly, whereupon, depending on the strength
of the initial disturbance, it either decayed or gave rise to a turbulent spot. This
scenario seems to be close to what is described by the temporal analysis. Henningson,
Lundbladh & Johansson (1993) made direct numerical simulations of the same flow
with a localized disturbance which further corroborated the transient growth mecha-
nism. It is noteworthy that one old transition experiment has been re-evaluated and
evidence for the existence of transiently growing disturbances was found (see Mayer
& Reshotko 1997). In the analysis the temporal development was converted to a
spatial development by using the propagation velocity of the disturbance.

A theoretical analysis of transient growth in a spatial context has been pre-
sented by Luchini (1996) for boundary layer flow. He has shown the existence of
three-dimensional self-similar solutions (i.e. streaky structures) where the streamwise
disturbance velocity grows as x0.213. Hence in spatially growing boundary layer flows
it is not necessary true that transient growth will be followed by viscous decay.
Therefore the transient growth mechanism may be quite important for boundary
layer transition in the case of excitation by three-dimensional disturbances (such as
localized roughness elements or free-stream turbulence).

1.1. Oblique transition

The oblique transition concept was introduced by Schmid & Henningson (1992)
and involves transient growth as a major component. The starting point is the
introduction of two oblique waves of small but finite amplitude. The wave pair
can be characterized by (ω0,±β0), where ω0 is their angular frequency and ±β0

their spanwise wavenumbers. They may interact nonlinearly and formally one can
state that the first-generation interaction will give components characterized by (0,0),
(2ω0,0), (2ω0,±2β0) and (0,±2β0), where the fourth corresponds to a stationary,
spanwise-periodic disturbance. It was found by Schmid & Henningson that initially
the (0,±2β0) mode reaches high amplitudes through transient growth. The result is
a streaky structure in the streamwise velocity, which was verified experimentally in
plane Poiseuille flow by Elofsson & Alfredsson (1995).

Berlin, Lundbladh & Henningson (1994) carried out direct numerical simulations
of oblique transition in a Blasius boundary layer flow (i.e. the initial disturbance was
two oblique waves) and found that after an initial growth of the streaky structures
a rapid growth of modes with non-zero ω followed. Later Wiegel (1996) showed
the existence of oblique transition in flat-plate boundary layer experiments. Berlin et
al. (see also Lundbladh et al. 1994) suggested that oblique transition consists of the
following three stages: firstly, nonlinear generation of streamwise vortices by a pair of
oblique waves (which can be understood by considering the forcing of the streamwise
vorticity by nonlinear terms resulting from the pair of oblique waves, see the Appendix
for details); secondly transient growth of streaks; and thirdly, breakdown of the flow
due to a secondary instability of the streaks provided their amplitude exceeds a
threshold amplitude. This last stage has recently been investigated by Reddy et
al. (1998) who studied the secondary instability of streaks in plane channel flows
through direct numerical simulations and stability calculations. Their results indicate
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that the secondary instability is mainly due to spanwise inflectional profiles which
occur through the transient growth of the streaky structures. A similar analysis was
made by Waleffe (1997) whose main purpose was to study streak instability as one
part of a process describing self-sustained turbulence near walls.

1.2. Transition originating from Tollmien–Schlichting waves

An alternative route to transition is the widely studied scenario which considers
growing two-dimensional waves which become three-dimensional and break down
to turbulence. The linear stage is known to be described by the Orr–Sommerfeld
equation and the travelling wave disturbances which develop according to this equa-
tion are denoted Tollmien–Schlichting (TS-) waves. The experimental verification of
such waves was reported by Schubauer & Skramstad (1947) where the waves were
generated by a vibrating ribbon close to the surface of a smooth plate in a wind
tunnel with a low free-stream turbulence level. Almost perfect agreement between the
linear parallel theory and experimental results on two-dimensional waves was finally
obtained by Klingmann et al. (1993) in the case of the Blasius boundary layer. Their
results showed that non-parallel effects were small in the case of two-dimensional
waves, in contrast to several previous investigations.

Also, oblique waves have been found to follow linear theory. Gaster (1975) was
able to simulate the growth of a wave packet by linear theory, whereas Kachanov &
Michalke (1994) made an extensive study of among other things the growth rate for
oblique waves.

For the TS-wave transition scenario the two-dimensional waves develop a strongly
growing three-dimensionality which leads to breakdown. This can be modelled by
considering a combination of a two-dimensional wave with small-amplitude oblique
waves. Klebanoff, Tidstrom & Sargent (1962) reported on one such scenario which
results in an aligned pattern of Λ-vortices and is usually denoted K-transition (K for
Klebanoff). Another secondary instability scenario, the so-called subharmonic-mode
breakdown (see Kachanov & Levchenko 1984) results in the formation of staggered
Λ-vortices which hence gives rise to a subharmonic frequency. The TS-wave scenario
has been thoroughly investigated in experiments, see e.g. Corke & Mangano (1989)
who performed measurements on controlled two-dimensional and three-dimensional
disturbances in a flat plate boundary layer flow. The studies cited above concerned the
boundary layer flow developing on a flat plate at zero pressure gradient, and which
of the described scenarios (fundamental or subharmonic) that will dominate in a situ-
ation is strongly dependent on the amplitudes of the TS-wave and the oblique waves.

In plane Poiseuille flow transition usually occurs at Reynolds numbers for which
two-dimensional TS-waves are damped. Despite the fact that the waves are damped
they can still undergo a secondary instability forced by three-dimensional distur-
bances. In experimental investigations where the two-dimensional waves were artifi-
cially forced the breakdown has been observed under various conditions (sub- and
supercritical Reynolds numbers) to be of K-type, see for instance Nishioka, Iida &
Ichikawa (1975). In these experiments the three-dimensionality was provided through
a non-uniform basic flow. These observations are in contrast to the theory of Herbert
(1983) which predicts subharmonic transition to dominate for small TS-wave ampli-
tudes. A possible explanation was given by Singer, Reed & Ferziger (1989), who used
direct numerical simulations to study the effect of weak streamwise vortices. They
found that the presence of streamwise vortices caused K-type transition to dominate
even at conditions for which theory predicts the dominance of subharmonic modes.
The different transition scenarios have also been investigated by Saiki et al. (1993)
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through spatial numerical simulations at Re = 5000. In all these cases the two-
dimensional wave has a fairly high amplitude which could not be realized naturally
if the flow is subcritical.

1.3. Motivation of present work

From what has been described above it seems clear that oblique transition is qual-
itatively different from the traditional TS-wave scenario. In oblique transition the
starting point is the interaction of two small- but finite-amplitude oblique waves. This
is in contrast to the models describing the secondary instability of two-dimensional
TS-waves where two small-amplitude oblique waves gain energy from their interac-
tion with the mean flow and a finite amplitude two-dimensional wave. Also the later
stages before breakdown are quite different: in oblique transition the transiently grow-
ing streaks seem to undergo a spanwise inflectionally induced secondary instability
whereas the TS-wave route to transition involves the formation of Λ-shaped struc-
tures. It is clear that the TS-wave scenario may dominate in the boundary layer case
since transition usually is supercritical. It is more questionable whether this scenario
is responsible for unforced transition in various types of channel flows which occur at
subcritical Reynolds numbers. This is also substantiated by Henningson (1995) and
Reddy et al. (1998) who have shown that the energy of a two-dimensional wave has
to be almost three orders of magnitude larger than that of a pair of oblique waves to
cause subcritical transition in plane Poiseuille flow at Re = 2000.

The main purpose of the present investigation was to verify the proposed oblique
transition scenario in a physical experiment. In § 2 we describe the experimental
procedure and characterize the base flow and also the method for the linear stability
calculations is presented. Section 3 contains the results from the initial investigations
on the characteristics of two-dimensional and oblique waves. These results show that it
is possible to generate both types of waves in plane Poiseuille flow with the technique
of vibrating ribbons. It also gives new and extended experimental observations of
linear stability in plane Poiseuille flow. The main part of the present work is contained
in § 4 where the oblique transition results are described. Two cases are discussed: first
a small- but finite-amplitude case where the interaction of the waves gives rise to
streaky structures which after an initial transient growth decays and transition do
not occur; and secondly, a high-amplitude case where the interaction also results
in streaky structures, but where the amplitude of the streaks becomes much larger
and the structures finally break down. Finally, § 5 contains further discussion and a
summary of the main findings.

2. Experimental description
2.1. Set-up

The experiments were performed in an air-flow channel at the Royal Institute of
Technology (KTH). The channel is a modified version of the one used by Klingmann
(1992). The channel consists of two 10 mm thick glass plates separated by 8.2 mm
thick distance bars of aluminium which are positioned to give a channel width of 830
mm (see figure 1). Air is taken from the room and a frequency-controlled fan forces
it to the settling chamber through a perforated distribution pipe and two screens
followed by guide vanes and a package of three damping screens. After passing the
settling chamber the air flows through a 40 : 1 ratio contraction before it enters the
1.9 m long channel. The channel is equipped with static pressure taps and a total
pressure probe for calibration and monitoring purposes.
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Figure 1. Experimental set-up. All measurements in mm.

Measurements of the streamwise velocity component were made using an AA-
systems 1003 constant-temperature anemometer and platinum single-wire probes
having a wire diameter and length of 2.5 µm and 0.5 mm, respectively. The hot-wire
probe is mounted to a wedge-manouverable mechanism which allows the probe to be
traversed in a direction normal to the channel walls. The wedge mechanism is mounted
on an aluminium bar which can be moved in the streamwise and spanwise direction by
means of two perpendicular guide systems. Stepping motors mounted to the wedge
rod and the spanwise guide system make it possible to automatically traverse the
hot-wire probe in the wall-normal and spanwise directions with a minimum step of
0.015 mm and 0.05 mm, respectively. A Macintosh computer and a MacADIOS adio
I/O unit were used for controlling the stepping motors and the data acquisition.

The hot-wire probe was calibrated against the parabolic Poiseuille profile at a
position 40 half-channel heights (h) downstream of the ribbons, which are mounted
255h downstream of the channel entrance. The calibration curve used was

U = k1(E
2 − E2

0 )1/n + k2(E − E0)
1/2, (2.1)

where E is the anemometer voltage at the velocity U, E0 the voltage at zero velocity
and the coefficients k1, k2 and n are determined from a best fit of the data to the
calibration function. Typically the calibration procedure resulted in an error of less
than 0.7% for all calibration points.

In the following velocities are normalized with the laminar centreline velocity UCL

and lengths are normalized with the half-channel height, h = 4.1 mm. The co-ordinate
system has the x-axis aligned in the streamwise, the y-axis in the wall normal and
the z-axis in the spanwise direction. The origin is at the crossing point for the two
ribbons and half-way between the lower and the upper plate.

2.2. Characteristics of the mean flow

Measurements were made to characterize the base flow in the channel, both with
and without the ribbons mounted inside the channel. The maximum background
disturbance level was found to be 0.16% for the case with Re = 2000 and both
ribbons mounted inside the channel without being forced. For a Reynolds number of
2000 a fully developed parabolic profile is obtained at approximately 220h downstream
of the channel entrance, see Schlichting (1979, p. 186). Figure 2 shows mean velocity
profiles across the channel measured at different streamwise positions with the two
ribbons mounted inside the channel but without being forced. Experimental data are
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Figure 2. Base flow with ribbons mounted inside the channel, Re = 2000 and z = 0.
Measurements at: ◦, x=5; +, x=50; 4, x=100; — corresponds to the parabolic profile.

shown as symbols and the line is the parabolic velocity profile. The velocity profile
at x = 5 is slightly distorted near the y-positions where the ribbons are mounted
(y = ±0.88), but the profiles which are measured further downstream do not indicate
any influence from the ribbons. The spanwise uniformity was also investigated and the
deviation in UCL was found to be less than ±0.3% at the centreline 40h downstream
of the ribbon intersection.

When traversing the hot-wire probe in the streamwise direction the centreline
velocity was found to change slightly, and its value increased by 1 % when the hot-
wire probe was traversed from the ribbon intersection to a position 70h downstream.
This change is believed to be an effect of the turbulent wedges that develop along the
channel sides which gives rise to a blockage of the flow. Also the traversable guide
bar which supports the hot wire gives rise to a pressure drop in the channel which
decreases when it is moved downstream and hence the flow rate may become larger
causing an increase in the centreline velocity.

2.3. Wave generation procedure

In the present study wave disturbances were generated with vibrating ribbons. Dif-
ferent ribbon arrangements were used with either a single ribbon mounted at the
lower wall or one ribbon at each channel wall. The ribbons were made of phosphorus
bronze and had a width and thickness of 3 mm and 0.05 mm, respectively. Each
ribbon spanned the whole channel width but only the central 320 mm of each ribbon
was vibrating. The working length of the ribbon and the distance between ribbon
and channel wall was set by 0.5 mm thick aluminium spacers positioned between the
ribbon and the glass wall. The tension of the ribbon was adjusted with a mechanism
mounted on one of the ribbon ends. After the ribbon tension had been adjusted the
part of the ribbon that was not vibrating was firmly attached to the channel wall
by a thin tape. Five permanent horseshoe magnets were placed along each ribbon
on the outside of the channel and the ribbon was made to vibrate by supplying it
with a sinusoidal electrical current. The forcing signal was provided by a function
generator and thereafter amplified by an audio amplifier whose output was connected
to a power resistor and a 220/33 V transformer. The amplitude of the signal to the
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ribbon was adjusted with a precision potentiometer connected between the function
generator and the input of the amplifier.

2.4. Procedure and dataprocessing

Most of the measurements were made at a Reynolds number Re = 2000 (UCL ≈
7.3 m s−1) and with the ribbons oscillating at an angular frequency ω ≈ 0.34
(ω = 2πfh/UCL) which corresponds to a dimensional frequency close to 96 Hz. Some
measurements were also made at Re = 1600 and at frequencies of oscillation in the
range ω ≈ 0.3–0.5.

To describe the measurement results we decompose the velocity field U(x, y, z, t) in
a time-averaged part U and a fluctuating part u:

U(x, y, z, t) = U(x, y, z) + u(x, y, z, t). (2.2)

For the stationary disturbance field we use Ud defined as

Ud = U(x, y, z)− 1

z1 − z0

∫ z1

z0

U(x, y, z) dz, (2.3)

where z0 and z1 are the spanwise limits of the measurement region. Two root-mean-
square (r.m.s.) measures for time-dependent disturbances (u) will be used: both the
total r.m.s., ur.m.s. and the r.m.s. obtained by filtering the signal in a 4 Hz band around
the forcing frequency, ur.m.s.,f0

.
The ribbons were adjusted to give the same maximum ur.m.s.,f0

in the lower and upper
part of the channel at x = 12 and z = 0. During the measurements the forcing signals,
the input signals to the ribbons, the static pressure drop and the temperature were
monitored. For small deviations from the calibration temperature the anemometer
voltage was compensated and if the temperature inside the channel deviated more
than 0.5 ◦C from the calibration temperature the hot wire was recalibrated.

Phase information for the signals was obtained with a phase alignment procedure
similar to the one used by Boiko et al. (1994). The hot-wire signal and the output from
the function generator were sampled almost simultaneously. The timeshift of 35 µs
was due to the limited throughput of the A/D-converter. By ensemble averaging the
phase-aligned signals the random phase contributions were effectively cancelled out.

2.5. Linear stability calculations

By assuming oblique wave disturbances,

v = v̂(y)ei(αx+βz−ωt), (2.4)

one can derive the following form of the Orr–Sommerfeld equation:

[iR(αU − ω)(D2 − k2)− iαU ′′ + (D2 − k2)2 ]v̂ = 0. (2.5)

In the following we will use the spatial formulation of the stability theory and
hence α = αr + iαi is a complex streamwise wavenumber, where αr is the physical
streamwise wavenumber and αi gives the amplification of the wave; β is the spanwise
wavenumber, k2 = α2 + β2 and ω is the angular frequency of oscillation. The phase
velocity of the wave is defined as c = ω/αr . With a wave angle formulation k2 can
be written as k2 = α2 + α2

r tan2 φ, where tanφ = β/αr . By choosing the boundary
conditions, v̂′ = v̂′′′ = 0 at the centreline (y = 0) and v̂ = v̂′ = 0 at the wall (y = 1)
symmetric eigenfunctions v̂ will be obtained, including the least stable one.

The eigenfunction v̂ is obtained with a shooting method which uses a fourth-order
Runge–Kutta scheme and an orthonormalization procedure. Typically 200 integration
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steps are used when integrating from the centreline to the channel wall. After v̂ has
been determined the streamwise eigenfunction û can be obtained by integrating the
following equation:[

D2 − k2 + iαR
(
U − ω

α

)]
û = R

(
1− α2

k2

)
U ′v̂ +

[
R
α2

k2

(
U − ω

α

)
− iα

]
v̂′ + i

α

k2
v̂′′′,

(2.6)

with the boundary conditions, û = 0 at the centreline (y = 0) and û = 0 at the wall (y =
1). The solution is determined by combining the solution of the homogeneous problem
and the particular solution in such a way that the boundary condition at the wall
is fulfilled. When comparing with experimental data the absolute value |û| and the
phase ϕ = arctan[Im(û)/Re(û)] are used.

3. Linear TS-wave development
In order to ascertain that the vibrating ribbons were working properly initial

measurements were carried out with only one vibrating ribbon. Both two-dimensional
and oblique waves were investigated and the ribbons were either mounted parallel
to or inclined by 34◦ or 45◦ with respect to the spanwise direction. Amplitude and
phase distributions across the channel of the streamwise disturbance velocity were
measured at different streamwise and spanwise positions. Also, damping rates and
phase evolutions were determined for various Re and ω.

3.1. Two-dimensional TS-waves

In this section experimental results for Re = 1600 will be compared with linear
stability theory (see also § 2.5). Wave disturbances were generated by a vibrating
ribbon mounted at the lower channel wall perpendicular to the streamwise direction.
The ribbon was operated at an angular frequency ω = 0.42 and a low amplitude was
chosen in order for the waves to develop according to linear stability theory.

Figure 3 shows the amplitude and phase distributions measured at x = 20 and z = 0
for a maximum ur.m.s.,f0

= 0.25% close to the ribbon (x = 12). The amplitudes have
been normalised with their maximum values and when compared with linear theory
(the line in figure 3) the overall agreement is seen to be good. The maxima in both the
lower and upper parts of the channel are located at a distance of 0.2h from the walls;
however, the maximum amplitude is about 10% smaller in the upper channel half than
in the lower. This is probably because it takes some distance for the wave generated
at the lower wall to reach the same amplitude in both channel halves. The phase
distribution of u shows the characteristic phase shift of 180◦ at the centreline due to
the opposite symmetries of u and v. The measured and calculated phase distributions
were matched at y = −0.35. In contrast to the amplitude distribution the phase seems
to adhere equally well to linear theory on both sides of the centreline, although there
is a small deviation from linear theory close to the wall. In the spanwise direction the
variation in the maximum value of ur.m.s.,f0

was ±3% over the central 16h.
In figure 4 the amplitude and phase evolution for a wave disturbance at the same

Re and ω as above are shown. For comparison results from linear theory are also
displayed in the figure, corresponding to αi = 0.043 and c = 0.35, and the matching
between measurements and calculations was done at the first measurement position
(x ≈ 12). The amplitude displayed in figure 4 (a) was determined by traversing the
hot-wire probe normal to the wall in the lower part of the channel and then extracting
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Figure 3. Tollmien–Schlichting wave at Re = 1600 and ω = 0.42. (a) Wall-normal profile of
amplitude (ur.m.s.,f0

); (b) corresponding phase profile. •, Measurements at x = 20, z = 0; ——, results
from linear stability theory.
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Figure 4. Tollmien–Schlichting wave at Re = 1600 and ω = 0.42. (a) Development of amplitude
(ur.m.s.,f0

); (b) phase evolution. •, Measurements; ——, results from linear stability theory.

the maximum ur.m.s.,f0
for each streamwise position. The experimental data indicate a

slightly larger damping rate than the results from linear stability theory, which may
be due to the non-symmetry with respect to the two walls seen in the amplitude
distribution. It should, however, be pointed out that the low disturbance amplitude
makes it difficult to measure the amplitude with high accuracy especially for the points
far from the ribbons. For the phase evolution (figure 4 b) the agreement between the
experimental results and linear theory is good (the phase was also determined at the
maximum in the lower part of the channel).
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Figure 5. Oblique wave (φ = 45◦) at Re = 2000 and ω = 0.33. (a) Wall-normal profile of amplitude
(ur.m.s.,f0

); (b) corresponding phase profile. •, Measurements at x = 35, z = 0; ——, results from
linear stability theory.

3.2. Oblique waves

Oblique waves were generated by mounting one ribbon on the lower channel wall at
an oblique angle to the direction of the flow. Wave disturbances with ω = 0.33 were
investigated at Re = 2000 and at a wave angle of 45◦. As for the two-dimensional
waves, a low initial amplitude is shown (ur.m.s.,f0

= 0.45% at x = 12).
Figure 5 (a) shows the amplitude distribution from measurements at x = 35 and

z = 0. It is seen that linear theory and the experimental results are in close agreement.
However, due to a limited number of measurement positions in the wall-normal
direction it is not clear whether the maximum in the upper channel half is captured
or not.

Also, the experimentally determined phase distribution and the one obtained from
linear theory are in close agreement (figure 5 b). Generally it is observed that oblique
waves have their maxima in u further from the walls than two-dimensional waves
at the same Re and ω. A comparison with figure 3 (a) shows that this is the case:
in figure 5 (a) the maxima are located 0.25h from the walls, despite Re being higher
(which leads to a shift of the maximum closer to the wall). It should also be noted
that linear theory predicts that the oblique waves have small local maxima very close
to the walls. (These maxima are e.g. shown in Zang & Krist (1989) for a supercritical
Re = 8000.) The phase distribution on both sides of the centreline is characterized
by a region of constant phase, but for the oblique wave this region is smaller and
the deviation from this value close to the wall is larger than for the two-dimensional
case.

The downstream amplitude and phase evolution are shown in figure 6. When
comparing with the amplitude evolution for the TS-waves (figure 4) the evolution for
the oblique waves displays a larger scatter but the data agree well with the result
of linear theory (αi = 0.044). The measured downstream phase development gives a
streamwise phase velocity of c = 0.39 which is close to the one given by linear theory,
c = 0.37.
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Figure 6. Oblique wave (φ = 45◦) at Re = 2000 and ω = 0.33. (a) Development of amplitude
(ur.m.s.,f0

); (b) phase evolution. •, Measurements; ——, results from linear stability theory.

4. Oblique transition
The main aim of this study was to experimentally investigate the theoretically

predicted transition scenario known as ‘oblique transition’ in various parameter
ranges. Plane Poiseuille flow is an ideal flow field to carry out such an experimental
study with vibrating ribbons as it is possible to generate one wave at each wall. In
the present experiments, two oblique waves with the same angular frequency were
generated, each making the same angle to the mean flow but with opposite sign. Two
different wave angles were chosen, namely 34◦ and 45◦, where the latter allowed us
to make direct comparisons with results from numerical simulations. Two different
ranges of amplitudes of the initial waves were used: a low range with initial amplitudes
below 2.5% and a high range with amplitudes above 4%. The difference between
the two was that for amplitudes below 2.5% transition did not occur within the
experimental channel (x 6 200) whereas for amplitudes in the high range transition
took place within 70h from the intersection of the ribbons.

4.1. Low-amplitude results

Figure 7 shows the result of the interaction of two oblique waves of low amplitude.
The measurements were made at y = −0.75 by traversing the hot wire in the spanwise
direction in steps of 1.0 mm and in the streamwise direction in steps of 16.4 mm (4h).
The original waves were generated at an angle of 45◦ with ω = 0.33 and an initial
maximum ur.m.s.,f0

of 1.5%. The figure shows contour plots of Ud, ur.m.s. and ur.m.s.,f0
in

an (x, z)-plane (for definitions see § 2.4).
The longitudinal structures are strikingly illustrated by figure 7 (a) where two full

regions of high velocity and two of low velocity are seen. In the centre the structures
have developed at x = 20 and their amplitude increases in the downstream direction
to reach a maximum of ±3.5% inside the measurement area. The spanwise wavelength
is approximately 3.4h corresponding to a wavenumber of 1.85 which is close to twice
the spanwise wavenumber of the oblique waves (±0.90). By traversing the hot-wire
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Figure 7. Contour plots in a streamwise–spanwise plane at y = −0.75, Re = 2000, ω = 0.33 and
φ = 45 ◦. (a) Ud, contours: ±0.5 %, ± 1 %..; (b) ur.m.s., contours : 0.25%, 0.75%..; (c) ur.m.s.,f0

,
contours : 0.25 %, 0.75 %. . . Negative contours are dashed.

probe in the spanwise direction at x ≈ 125 and studying the anemometer output, the
spanwise structure with low- and high-velocity regions was clearly observed at this
streamwise position also although the streak amplitude was less than the maximum
values seen in figure 7 (a).

As can be observed in figure 7 (b) ur.m.s. decreases in the downstream direction
and has its lowest amplitude in the high-velocity regions. The amplitude of the
fundamental frequency (figure 7 c) also decays from a value slightly above 1.25% and
the development is similar to that of ur.m.s..

When viewed in a cross-stream plane (figure 8) the distribution of regions with
positive and negative Ud across the channel is clearly seen. Each region of low and
high velocity is confined to either the upper or lower part of the channel and the
maximum disturbance occurs close to y = ±0.75 although a slight shift towards
the centreline is observed as the flow develops downstream. It is also clear that the
picture displays a non-symmetry with respect to the spanwise centreplane, z = 0.
The low- and high-velocity regions in the lower channel half appear to be shifted
approximately 0.9h in the spanwise direction with respect to the regions above
the centreplane. For an ideal situation where one introduces a symmetric pair of
Orr–Sommerfeld modes the flow would become symmetric with respect to y = 0.
In the experiment a non-symmetry is introduced since the waves are generated at
different walls, which is also confirmed by the numerical simulations of Elofsson &
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Figure 8. Contour plots of Ud in cross-stream planes for Re = 2000, ω = 0.33 and φ = 45◦.
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Lundbladh (1994). However, all the features of oblique transition are still captured
in the experiment, despite the difference compared to an ideal theoretical case. Some
further discussion and comparison between experiments and simulations are presented
in § 5.

4.2. High-amplitude results

With a low initial wave amplitude a large-amplitude stationary structure will develop
but breakdown will not occur in the region of measurements. However, if the ini-
tial amplitude is increased the downstream development will change substantially.
Figure 9 (a–c) shows the same plots as in figure 7 but for a high amplitude of the
original waves. The maximum value (close to the ribbons) of ur.m.s.,f0

was 6.4 % and
the data were measured at the same positions and with the same parameter settings
as in figure 7.

Also here the initial development of the interaction gives rise to longitudinal streaks
with about the same wavenumber as in the low amplitude case. The maximum
amplitude of the streaks is now however, in the range of ±20 %. In the downstream
part of the measurement region the streaks are less well defined. The time-dependent
disturbance (ur.m.s.) reach high amplitudes, of the order of 15 %, whereas disturbances
around the fundamental frequency decay at the end of the measurement region
suggesting a transfer of energy from the fundamental to other frequencies during the
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Figure 9. Contour plots in a streamwise–spanwise plane at y = −0.75, Re = 2000, ω = 0.33 and
φ = 45◦. (a) Ud, contours: ±4 %, ± 8 %.; (b) ur.m.s., contours : 6 %, 12 %.; (c) ur.m.s.,f0

, contours:
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transition stage. One explanation for the downstream observations may be that the
streaks have started to oscillate in the spanwise direction.

As can be seen in figure 10 the structure of Ud in a cross-stream plane is similar
to the one for the low-amplitude case but the amplitude is now larger. However,
the main difference between a low and a high initial amplitude is seen in the
downstream development of ur.m.s.. Instead of decaying in the streamwise direction,
as for a low amplitude, ur.m.s. grows and localized regions of high amplitude first
appear close to the walls and then move towards the centreplane of the channel
(see figure 11). These maxima appear mainly at positions between regions of positive
and negative Ud but they are also observed inside regions with negative Ud (cf.
figure 10). Initially the main contribution to ur.m.s. is from disturbances with the
same frequency as the forcing signal to the ribbons, but further downstream the
contribution from harmonics of the forcing signal is increasing. The positions of the
maxima for the second harmonic are mainly concentrated in regions with negative
Ud (not shown).

Figure 12 shows profiles of U and ur.m.s. measured at z = 0.6 (marked as dashed
lines in figure 10). At this spanwise position y < 0 is a region with large spanwise
gradients in Ud and y > 0 corresponds to a region of negative Ud. Initially the largest
growth in ur.m.s. is seen to occur close to the lower wall and values near 15 % are
reached at x = 30. Later the region of maximum amplitude is moving towards the
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Figure 10. Contour plots of Ud in cross-stream planes for Re = 2000, ω = 0.33 and φ = 45◦.
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centre of the channel with increasing x and a strong growth is also seen for y > 0. At
the last streamwise position the time-dependent disturbance (ur.m.s.) is almost equally
distributed through the central part of the channel which signifies the flow being close
to transition.

To get more insight into the development of the disturbances it may be worthwhile
to study the spectra in different regions of the flow. The sequence of spectra shown
in figure 13 is taken with ω = 0.34 at y = −0.75 and z = 1.3, which corresponds to
a region of positive Ud. In this case the wave amplitude was about 5% and the wave
angle was φ = 34◦, but the development was similar for φ = 45◦.

At the first streamwise position the amplitude of the fundamental and its first
harmonics show clear peaks in the spectrum, but their amplitudes are relatively low
compared to a spectrum obtained at a corresponding region with negative Ud (not
shown). A pronounced growth of higher harmonics is observed to occur between
x = 50 and x = 58, and at the last streamwise position the spectrum displays similar
amplitudes for the fundamental frequency and its harmonics. One should be aware
of the distinction between spectra obtained at different cross-stream regions. In a
region with negative Ud a substantial filling of the spectrum is seen at x = 65,
and also the peak amplitudes are larger than for the present region with positive
Ud.
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4.3. Amplitude evolution of Fourier modes

In order to get further information about the oblique transition process it is useful to
study how the disturbances evolve in the (ω, β)-plane. The present measurements were
made at y = 0.75 by traversing the hot-wire probe in the spanwise direction over a
total of 64 measurement positions with a spanwise separation between measurement
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Figure 13. Amplitude spectra measured at y = −0.75, z = 1.28 and x = 16, 21, 26, 31, 36, 43,
50, 58 and 65 with Re = 2000, φ = 34◦ and ω = 0.34. Consecutive spectra are shifted 30 Hz and
multiplied by 102.

points of ∆z = 0.2h. The y-position was chosen to be close to the position of
the maximum of ur.m.s.,f0

. Fourier transforms of the time series (sampled with 2880
Hz) were made during the measurements and the Fourier components obtained
by averaging 25 sets of phase-aligned data were stored on file. After completion
of the measurements the energy in (ω, β)-modes was determined by performing a
spanwise Fourier transform of the phase-aligned data. The energy is defined as
the square of the absolute value of the normalized Fourier components, i.e. E =
|û(ωm, βn)|2.

Figure 14 (a) shows the result obtained with an amplitude of 1.6 % (corresponding
to the low-amplitude results in § 4.1) for which breakdown did not occur. The notation
used for the modes is (ω/ω0, β/β0), where ω0 and β0 are the initial angular frequency
and spanwise wavenumber, respectively. For comparison the decay rate for the (1, 1)-
mode obtained from linear stability theory is also shown in the figure (dashed line).

From the figure it is seen that by the first streamwise measurement position the
energy in the stationary mode denoted (0, 2) is approximately the same as the energy
in the forcing mode (1, 1). Energy is transferred directly into the (0, 2)-mode through
a nonlinear interaction between the initial (1,±1)-modes. This mode then experiences
a large transient growth and continues to grow for all positions but the growth rate
decreases in the downstream direction. Also, the energy in the (1,3)-mode is seen to
grow until x ≈ 28 before it starts to decay. It can be observed that the decay of the
(1, 1)-mode almost follows the damping obtained from a linear stability calculation
for a single oblique wave. However, the decay is modified due to energy transfer
between modes. When compared with figure 3 in Schmid, Lundbladh & Henningson
(1994), here reproduced in figure 14 (b), the energy evolution obtained from the
experiment is found to display a striking similarity with their spatial simulation.
However, only a qualitative comparison can be expected, mainly because of different
starting conditions, but also since the measurements are made at one wall-normal
position and the simulation data stem from an integration through the whole channel.
In both cases, after an initial stage of positive growth, all modes decay and transition
does not occur.

If the amplitude of the forcing signal to the ribbons is increased the energy
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Figure 14. Energy in (ω, β)-modes at Re = 2000 and φ = 45◦ from (a) measurements for ω0 = 0.33
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represent the decay rate obtained from a linear stability calculation for the (1,1)-mode. The data
in (a) are normalized with the energy in the (1,1)-mode at the first measurement position.

evolution will change character and modes with frequencies that are harmonics of
the forcing signal will start to grow. Figure 15 displays the energy evolution of
(ω, β)-modes resulting from a high forcing amplitude (5%). As for the low-amplitude
case the largest energy is found in the (0,2)-mode. The (1,1)-mode grows initially
but then starts to decay at x ≈ 19 and for this higher amplitude the energy in
the (1,3)-mode almost reaches the same level as for (1,1). One can note that the
large amplitude of the (1,3)-mode is clearly observed in physical space also, in the
form of the double-peaks in ur.m.s. seen in figure 11. The main difference between
the low and high amplitude cases is the strong growth of the higher harmonics
in the high amplitude case, whereas for low amplitudes these harmonics always
decayed.

Another way to illustrate the growth of the higher harmonics is to show the
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spectra averaged over all spanwise wavenumbers. Figure 16 shows data from the
same measurements as above at two streamwise positions, x = 12 and x = 60.
The results were obtained by adding the Fourier components from all the spanwise
wavenumbers for each frequency. Initially the spectra are similar both for the low-
and high-amplitude cases with a dominant peak at the forcing frequency. For the
higher amplitude a few more of the higher harmonics are observed but these are of
very low-amplitude. At x = 60 the picture is however completely changed. For the low
amplitude case only the forcing frequency is seen; however it has decayed slightly. For
the high amplitude case on the other hand, both the fundamental and all harmonics
have increased in amplitude: notable is that the second harmonic almost reaches the
same amplitude as the fundamental. It can also be observed that the spectrum has
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started to become filled between the harmonics which is an indication that transition
has started.

4.4. Wave angle effect

Theoretically it is clear that the non-linear interaction between a pair of oblique
waves will result in the (0,2)-mode. This was confirmed in the experiment by using
two different wave angles. Most of the measurements were made with an angle of
45◦ in order to be able to compare with numerical simulations. The other wave angle
used was φ = 34◦ which should give a streak spacing that is 4/3 of the one obtained
for φ = 45◦. The difference in streak spacing can be observed in figure 17, which
shows contour plots of Ud in streamwise–spanwise planes obtained at two different
wave angles.

Figure 18 displays the evolution of ur.m.s. and ∆U for data obtained from measure-
ments at the two wave angles with an initial amplitude in the low-amplitude regime.
The data were obtained by extracting the maximum ur.m.s. value from a spanwise
position near z = 0 and the streak amplitude (∆U) was defined to be the difference
between the maximum and minimum mean velocity near z = 0 for a y-position where
the maximum ur.m.s. value was found. It is seen that a wave angle of φ = 45◦ results
in a larger streak amplitude than what is found for φ = 34◦, but no large differences
are seen in the ur.m.s. values (they decay from the same level with the same rate).
The results indicate that the smaller spanwise wavelength is less stable; however,
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small differences in the initial amplitudes of the waves may also play a role. In order
to investigate the influence of β on the stability of the streaks another method to
produce streaks should probably be used (such as suction through small holes at the
wall with different spacing).

A similar result was obtained in the temporal numerical simulations by Schmid &
Henningson (1992) who found that an increasing wave angle resulted in a decrease
in the time taken to reach the energy peak. Since the energy amplification factor
remained constant this resulted in an increasing growth rate.

5. Summary and discussion
The interaction of two oblique waves gives rise to the formation of streamwise-

oriented vortices, which generate stationary streamwise streaks of high and low
velocity. These streaks may grow, even if the flow is subcritical to modal dis-
turbances. If the streak amplitude becomes high enough secondary instabilities
may come into play whereupon breakdown and finally transition to turbulence
occurs.

In an experiment streaky structures may be obtained for many different types of
forcing, for instance localized suction or injection through the wall (continuously or
pulse-wise), localized roughness elements or from free-stream turbulence. If one is
attempting to study the transition process where streaky structures are involved the
use of oblique waves to generate the streaky structures has an advantage since the
initial conditions can be more accurately described than for instance those occurring
at a roughness element. The interaction of oblique waves may also occur naturally,
e.g. between two wave packets or between oblique waves in supersonic boundary
layers (in the supersonic case oblique waves may be the most amplified).

From the measurements of the flow field resulting from the interaction between
a pair of oblique waves we were able to distinguish two regimes which are strongly
related to the amplitude of the initial waves. The first regime is obtained at low
amplitudes and gives streaks which reach a maximum after which they decay. In
this regime higher modes decay and far downstream only the streaks remain. In this
paper we describe experiments at Re = 2000 where the streaks reach an amplitude
of ±4− 5% around x = 45 before they slowly decay downstream; however they can
still be observed at x ≈ 125. Despite the finite amplitude of the streaks, modes with
non-zero frequency decay (except for a short initial growth of the (1,3)-mode). Other
experiments at the same Reynolds number show that we observe a similar behaviour
for streak amplitudes up to 2 to 3 times higher.

For the second, high-amplitude, regime on the other hand, the non-zero frequency
modes are amplified when the streak amplitude reaches a threshold of about ±12
− 15%. The (0, 2)-mode is still dominating and for the present experiment the maxi-
mum streak amplitude is now around ±20%. As the higher modes grow downstream
the streaks become less regular.

When comparing the present experiment with the scenario proposed by Berlin et al.
(1994) it is clear that they have many features in common. The streaks are generated
both for low and high initial amplitudes, and if the streak amplitude becomes large
higher frequency–wavenumber components grow rapidly and the flow goes towards
breakdown.

The first stage in the proposed oblique transition scenario is the formation of
streamwise vortices. An analysis is presented in the Appendix which shows that the
interaction of two oblique waves forces streamwise vorticity with half the spanwise
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wavelength of the original waves. In order to experimentally verify the formation
of the vortices it is not sufficient to study the streamwise velocity component, but
one would need to have information about the other velocity components as well.
An attempt was made to measure the spanwise velocity component in a region close
to the intersection of the ribbons (x < 20). The spanwise velocity component (W )
was obtained from measurements utilizing one slanted hot-wire probe (45◦) and one
straight probe. The W -component was then determined by subtracting the velocity
given by the straight probe from the one obtained by the slanted wire probe from
measurements at the same position. However, no conclusive data could be obtained
except that the spanwise velocity was less than 1% of UCL, which shows that the
strength of the vortices is small.

One can both from the results shown in the Appendix and from symmetry reasoning
argue that streaks of high velocity should occur at the same z-position on both sides
of the channel and vice versa for low-velocity streaks. In the experiments this is
not the case: for the low-amplitude case the symmetry properties are a mixture; for
the high-amplitude case there is almost complete anti-symmetry with respect to the
centreplane (y = 0) for large x. One may hypothesize that the symmetric arrangement
of high and low-velocity regions is inherently unstable and that an initial asymmetry
will become more pronounced the higher the amplitude of the streaks.

The generation of TS-waves in an experiment will always give rise to a wave
which is an approximation of an ideal TS-wave. For instance, initially it will typically
contain higher modes, and it will also take some downstream distance before it has
been established throughout the boundary layer or channel. The present experiments
seem to indicate that there is a slight difference in amplitude between the channel
halves even for large downstream distances; however the wave characteristics are
still close to the theoretical ones. In order to investigate some of the details of
ribbon-induced TS-waves, Elofsson & Lundbladh (1994) made numerical simulations
with a spatial version of the code by Lundbladh, Henningson & Johansson (1992).
The action of the vibrating ribbons was modelled by adding time-periodic volume
forces to the Navier–Stokes equations in the regions occupied by the ribbons. The
amplitude of the volume forces was adjusted to get the same level of ur.m.s. at (x, y, z) =
(15, −0.75, 0) as was observed in a reference experiment. Several grids were tested with
up to 256 × 49 × 320 spectral modes in the streamwise, wall-normal and spanwise
directions, respectively. Figure 19 is reproduced from Elofsson & Lundbladh and
shows a comparison between measurements (a) and simulations (b). In the figure Ud

is plotted on an (x, z)-plane at y = −0.75 and the agreement between experiments
and simulations is seen to be close. From the simulations it was shown that with
the arrangement of the present experiment a non-symmetry with respect to the
centreplane would occur, which was also observed in the experiment (see § 4.1).

5.1. Relation to bypass transition

In many situations the transitional Reynolds number is lower than the critical
Reynolds number for which linear wave disturbances grow exponentially. In these
cases one generally denotes the transition as ‘bypass transition’. Originally Morkovin
(1969) stated that “Apparently, . . . , we can bypass the TS mechanism altogether if we
can replace it with another strongly amplifying mechanism–”. In his case he referred
to inflectional instability, but bypass usually refers to all transition scenarios which do
not start with amplified TS-waves. One example is transition which initially depends
on algebraically growing disturbances.

In Klingmann’s (1992) experiment the appearance of large-amplitude streaks was
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Figure 19. From Elofsson & Lundbladh (1994). Ud in an (x, z)-plane at y = −0.75 for Re = 2000,
ω = 0.34 and φ = 45◦. (a) Experimental results and (b) simulation results. Contour spacing is 0.05.

observed when introducing a localized (in time as well as space) disturbance from a
small hole in one wall. At low amplitudes they decayed after an initial growth whereas
large-amplitude disturbances gave rise to turbulent spots. There are many similarities
between the current experiments and Klingmann’s investigation. However, the use of
a pair of vibrating ribbons provides a controlled way to generate the initial streaky
disturbance as well as subsequent higher modes. In our case the oblique waves are
exponentially decaying and the growth is first seen as a growth of the streaks (i.e.
transient growth). Hence, the oblique transition scenario may be classified as one form
of bypass transition. In fact, as discussed above, there are a number of disturbances
that will create streaks, and it seems plausible that when such streaks have formed,
algebraic growth will be responsible for their amplification and that the breakdown
is not too sensitive to the actual origin of the streaks.

An interesting aspect of three-dimensional disturbance growth in the case of a
laminar boundary layer on a flat plate is transition under the influence of free-stream
turbulence. Also in this case the initial development gives streaky structures (see e.g.
Westin et al. 1994 and Luchini 1996). Flow visualization has indicated that a wavy
type of secondary instability on the streaks is the first step in the breakdown process
to fully turbulent flow (Matsubara & Alfredsson 1995).

5.2. Summary of major results

The initial part of the current investigation concerned experimental verification of the
linear stability of two-dimensional and three-dimensional TS-waves in plane Poiseuille
flow. The experiments extend the results of Nishioka et al. (1975) and are in excellent
correspondence with linear theory regarding phase speed, growth rate (or rather
decay) and amplitude and phase distributions.

The interaction of two oblique waves was found to give rise to stationary streamwise-
oriented streaks of high and low velocity, which initially grow in amplitude. The
spanwise wavenumber is twice the wavenumber of the oblique waves.

For low initial amplitudes the streaks reach a maximum whereupon they decay.
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Figure 20. Net contribution from nonlinear forcing terms (averaged over one streamwise
wavelength). Re = 2000, φ = 45◦ and ω = 0.33. Amplitude is arbitrary.

From the experimental data it was possible to obtain the development of various
(ω,β)-modes and in this case all modes were found to decay.

For a high initial amplitude of the oblique waves the streaks grow to high amplitude
but in this case other modes also grow strongly. It is clearly seen that high-frequency
modes are mainly amplified in regions of large spanwise shear, indicating that the
spanwise inflectional profiles are important for this growth. For large x the dominating
mode is (1, 3) which in physical space is seen as double-peaks in ur.m.s., centred around
regions with negative Ud.

From the three last points listed above one can conclude that the present study has,
for the first time, verified the oblique transition scenario in a physical experiment.

Fruitful discussions with Dan Henningson and co-workers are gratefully acknowl-
edged. This work was supported by the Swedish Research Council for Engineering
Sciences (TFR).

Appendix
The interaction of two oblique waves gives rise to streamwise vortices. This may

not be obvious but can be seen from the vorticity equation. The vorticity equation
may be written

Dω

Dt
= (ω · ∇)u+ ν∇2ω.

Now consider a parallel shear flow where the basic flow is given by (U(y), 0, 0) and
the fluctuating velocity components are (u, v, w). By taking the x-component of the
vorticity equation we get(

∂

∂t
+U

∂

∂x

)
ωx = −U ′ ∂w

∂x
+ ν∇2ωx − (u · ∇)ωx + (ω · ∇)u.

The two first terms on the right-hand side are linear in the disturbance quantities
and give changes in ωx due to vortex stretching and viscous diffusion respectively.
The two last terms are nonlinear in the disturbance quantities and are the source
for the nonlinear interaction, i.e. they are forcing terms for the higher modes of ωx.
By using the velocity distribution for two oblique waves (obtained from (2.5), (2.6)
and continuity) it is possible to explicitly calculate the forcing terms. By averaging
the contributions from the different terms over one period in time one obtains the
forcing shown in figure 20. It is clear that the forcing has a pattern of regions of
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alternating sign, which would tend to give rise to streamwise counter-rotating vortices.
By studying the individual terms it is found that ωy∂u/∂y and ωz∂u/∂z give the largest
contributions.
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